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Section I

Solving the Mysteries

Order & Chaos

"In bello parvis momentis magni casus intercedunt."
(In war great events are caused by small things.)

Julius Caesar

Determinism is the philosophical belief that every event or action is the inevitable result of preceding events and actions. A deterministic sequence is one in which only one thing can happen next and in which precise laws govern its evolution. Equations based on Newtonian mechanics are deterministic as they are supposed to be able to determine the future based on the clockwork law f=ma. In fact, all linear dynamical systems are deterministic and predictable. However, when a dynamical system is nonlinear, even when it is deterministic, it may not always be predictable. This may be demonstrated by the 'bouncing ball and oscillating table' experiment. Both the bouncing ball and the oscillating table are behaving within the realms of deterministic Newtonian mechanics. However, due to impacts at different velocities, frequencies and strengths, their motions become totally unpredictable after a while. This verifies that determinism does not imply predictability.


According to Pierre Simon de Laplace, given the position and velocity of every particle in the universe, the future may be determined by the clockwork law f=ma. Determinism assumes that one has all the minor details to specify the initial states exactly. But is this possible? The world is a system with an extremely large variability, consisting of a very large number of variables. It is not just a simple and boring system composed only of one or two particles, nor is it composed only of planets orbiting other planets, regular infinite crystals and simple gases or liquids. Moreover our everyday situation is not that of falling apples. In fact, landscapes differ from place to place and from time to time. The weather alone is governed by more than 5,000,000 equations, and this set of equations is still not completely exhaustive as we are still not sure whether other components may be affecting the weather without us knowing. Variability may exist on a wide range of length scales. When we zoom in closer and closer, or as we look out further and further, we find variability at each level of magnification, with more and more details appearing. Even if we were given the most powerful computer in the world, we would not be able to input the large volumes of data describing the world and compute the outcome. This is why the world is so complex and often unpredictable although everything is supposed to be deterministic.

'Chaos' is an ancient word originally denoting a complete lack of form or systematic arrangement, but now often used to imply the absence of some kind of order that ought to be present. It is governed by deterministic equations and it occurs when determinism suffers Lyapunov growth of unavoidable uncertainty over time that wipes out long-term predictability due to its sensitive dependence. Chaos is not randomness. In fact, randomness is a special case of chaos, when the number of degrees of freedom approaches infinity. A system is considered 'random' only when it consists of an infinite number of components, each exhibiting a chaotic behavior, when its complexity has reached its extreme of total disorder. The Brownian motion is an example of 'pseudo-randomness'. It is almost 'true randomness', but strictly speaking, it does not consist of an infinite number of particles.


Chaos is describable. A function is chaotic when it has a positive Lyapunov exponent
 at each point in its domain that is not eventually periodic, or when the function has sensitive dependence on initial conditions on its domain. Li-Yorke Theorem also establishes that if a 1-dimensional discrete-time dynamical system has a period-3 cycle, it will definitely have a chaotic phase. Thus chaos can be measured by the Lyapunov exponent or the sensitive dependence. The phase space diagram and the iterative maps are able to describe the chaotic activities, and the bifurcation diagram as shown in Figure 1 can also illustrate the transition between order and chaos. Randomness, though non-deterministic, is describable too. The Power Scaling Law
 and the Hurst exponent
 are quantitative tools used in describing randomness. Probability distribution functions like the Gaussian distribution, Uniform distribution and Chi-Squared distribution are also able to describe the population of random samples.


Chaos, order and complexity can co-exist. The world around us is the best proof. There is order when the movements in a system are predictable. The falling apple is orderly, as Newtonian mechanics is able to predict its motion. However, there are also chaos and complexity in nature. A system becomes complex when it has a large variability, where complexity is the scale that spans from one extreme of order to the other extreme of disorder. Fractal structures and catastrophic events are complex. On the other hand, chaos is the rather unpredictable behavior in a nonlinear system. The motion of air particles is chaotic due to the large number of particles bombarding each other at different velocities, frequencies and strengths. All these co-exist in nature.

Figure 1. The bifurcation diagram.
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So how is complexity generated? 'Self-organized criticality' is so far the only known general mechanism to generate complexity. The canonical example of self-organized criticality is a pile of sand. A sand pile exhibits punctuated equilibrium behavior, where periods of stasis are interrupted by intermittent sand slides. The sand slides, or avalanches, are caused by domino effect, in which a single grain of sand pushes one or more other grains and cause them to topple. In turn, those grains of sand may interact with other grains in a chain reaction. Large avalanches, not gradual change, make the link between quantitative and qualitative behavior and form the basis for emergent phenomena. Complex behavior in nature reflects the tendency of large systems with many components to evolve into a 'critical' state where minor disturbances may lead to events of all sizes.

Strange Attractors & the Butterfly Effect

"If a single flap of a butterfly's wings can be instrumental in generating a tornado, so also can all the previous and subsequent flaps of its wings, as can the flaps of the wings of millions of other butterflies, not to mention the activities of innumerable more powerful creatures, including our own species."

Edward Lorenz

Phase space dimensions attempt to represent all the variables of a system. The resulting shapes on this map, called 'attractors', show how the system changes over time. Even the most complicated systems of nature, when plotted mathematically in phase space and followed over time, stay within a certain measure. However, within this measure, the orbits of the system never intersect, indicating that the system never exactly repeats itself, but neither do the orbits wander off in unpredictable ways. In other words, the system is attracted to an inescapable overall behavior and the resulting shape of this creative confinement is quite distinctive. It is the shape of the 'strange attractor'. 

Edward Lorenz, one of the pioneers of in the study of chaos, describes an attractor as "a limit set that is not contained in any larger limit set and from which no orbits emanate". This means that an attractor is a simple description of all the conditions that could possibly occur. In the weather machine, for example, we must include all temperatures between about -45°C to +45°C as being possible across the planet as a whole, all wind speeds from 0 up to about 200 mph, all precipitation from 'none' to 5" hailstones, etc. In essence, an attractor is the working out of all the possibilities within a certain frame of reference and the expression of the whole through its self-similar parts.

A 'strange attractor' is an attractor in the chaotic regime. It is generated by a simple set of differential equations, and since it is an attractor, all nearby points in the phase space converge toward it. All initial conditions die off as they get attracted to the attractor, and what remains is the strange attractor. It is also the product of stabilizing and destabilizing forces. If only stabilizing forces were present, the system would be attracted to the steady states and remain in its steady states forever. On the other hand, if only destabilizing forces were present, the states would run off to infinity. In the presence of both stabilizing and destabilizing elements, the orbits fold and unfold to form a well-defined object, and that object is called the strange attractor.

The strange attractor is a bizarre blend of determinism and chaos. It consists of a number of curves and directions, yet the big picture it gives us is always predictable. Edward Lorenz has compared the earth's climate to a strange attractor. "The attractor", he states, "is simply the climate, that is, the set of weather patterns that have at least some chance of occasionally occurring". The day-to-day weather fluctuations we experience make up the background chaos of the earth's climate, which in turn defines the equilibrium level of the system - the attractor - the overall predictable form a system will take. Otherwise stated, the overall global form described by the attractor is predictable, but the local details within the overall form are not.
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The beautiful 'Butterfly Effect', or the Lorenz attractor as shown in Figure 2, is a representation of the sensitive dependence on initial conditions in chaotic events. Its name was coined from the title of a paper written by Edward Lorenz, "Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?" When there is a small variation in the initial state, the growth of this change accelerates at an exponential rate, characterized by the Lyapunov exponent. As mentioned earlier, determinism suffers such Lyapunov growth of unavoidable uncertainty over time, and this wipes out long-term predictability. Chaos is created as a result of such Lyapunov growth or sensitive dependence. In fact, one of the characteristics of a chaotic system is the existence of at least one positive Lyapunov exponent. As this exponent grows larger, the dynamical system forgets its initial state more quickly and it grows more chaotic. A super-orderly state such as a fixed point has Lyapunov exponent equal to negative infinity since it implies that the trajectory has converged and never diverge again.

Figure 2. The Lorenz attractor.

There are many real-life examples of sensitive dependence in nature. Small changes in weather may cause larger patterns. In the stock market, slight fluctuations in one market can affect many others. In biology, a small change in a virus in monkeys in Africa creates a 'thunderstorm' of an effect on the human population around the world with the appearance of the AIDS virus. In understanding the evolution theories, small changes in the chemistry of the early Earth could have given rise to life. In the field of psychology, thought patterns and consciousness are altered by small changes in brain chemistry or small changes in physical environmental stimuli. All these examples illustrate the presence of sensitive dependence in nature.

Nonlinearity & Fractals

"The curve described by a molecule of air or of vapor

is following a rule as certainly as the orbits of the planets:

the only difference between the two is due to our ignorance.

Probabilility is related, in part to this ignorance, in part to our knowledge."
Pierre Simon de Laplace


A linear process is one in which, if a change in any variable at some initial time produces a change in the same or some other variable at some later time, n as large a change at the same initial time will produce n as large a change at the same later time. An example of a linear system is the Malthus Law
. It assumes that the resources to support population growth are limitless and the growth rate is proportional to the population itself.

A nonlinear process is simply one that is not completely linear, thus superposition is no longer valid. Chaos, fractals, solitons and complex systems like the cellular automata are all manifestations of nonlinearity. Even though chaos demands nonlinearity, nonlinearity does not ensure chaos. A very good example is the Verhulst Law
, which is essentially a modification of the Malthus Law. Though nonlinear, it is also orderly like the Malthus Law. However, discretization of the Verhulst Law will result in the Logistic Map
, which is nonlinear and can give rise to chaotic results. This is because discretization causes the precision of the initial states to evaporate and this uncertainty grows exponentially after going through several iterations. In fact R=3.5699456 marks the edge of chaos, and this can be seen in a bifurcation diagram. Beyond this point, all steady states become unstable and the system is in the phase of chaos, where the state is a period-infinity orbit. It has to be taken note that there are also windows of non-chaotic periods in the chaotic region.


Near the end of the nineteenth century, mathematicians started to discover that some sets of points had fractional dimensionality. By the twentieth century, Benoit Mandelbrot coined the term 'fractal' to describe systems with fractional dimensionality that are self-similar, though fractal dimensions can be an integer. These self-similar objects are scale-invariant, generated by well-defined iterative geometric rules, and they have a fixed scaling factor. Figure 3 shows some beautiful fractals.
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Figure 3. Fractals.

Many familiar systems in nature have fractal features. The weather has similar patterns on different scales that range from the small whirlwinds that might blow across a parking lot before a storm, to the scale of a tornado, and then to the scale of larger vortices such as the hurricane. Also, the stock market in general follows a pattern reflected in the jagged up-and-down fluctuations of individual markets and individual stocks. Currency exchange rates also follow such self-similar patterns. There are self-similarities in biological systems too, from large animals to single cells that are reproducing a similar genetic code. A tree has branches made of smaller branches, which are made up of smaller twigs, each similar to the larger pattern. Many coastlines are also jagged when viewed from a satellite and these same coastlines are made up of local bays and peninsulas when seen from an airplane. When walking along the coast, even more jagged detail may become visible. Clouds too have a similar pattern as the local scale when viewed on a global scale. A mountain has a shape that is repeated within itself, creating the mountain as a whole. Lightning bolts are also made of patterns repeated to form the whole. Even the universe itself may be viewed as one giant fractal. The stars of a galaxy, each having their own solar system, are similar to the planets within that solar system, each orbited by the moons. The matter that creates the universe is then made up of atoms about which orbit the electrons. The bifurcation diagram and some strange attractors, like the Henon map, are fractal. Though they are not strictly self-similar, successive magnifications do show an ever-increasing degree of detail. However, not all strange attractors can qualify as being fractal. The Lorenz attractor and the Chua circuit's double scroll attractor, for example, don't seem to exhibit self-similarity.

Applications & Control

"Precise definitions are not always convenient ones.

Having defined chaos in terms of sensitive dependence, we may discover that

it is difficult to determine whether certain phenomena are chaotic."
Edward Lorenz

Modern understanding of chaos has helped us to explain and solve many real life problems. Medical scientists interpret the cardiac dynamics of the periodic or chaotic patterns in the resonance of the heart cells in terms of the complex bifurcations that result from the interplay between inner physiological rhythms of heart cells and the frequency of the forcing electrical stimuli. Applying this concept to cardiac arrhythmias or electrocardiograms before and after heart attacks is capable of saving lives. Meteorologists also make weather predictions based on the sensitive dependence in our chaotic atmosphere. In fact, chaos has far-reaching applications in helping us to understand chaotic activities in the chaotic fluctuations in the stock market and currency exchange rates, and also in very different fields like disease monitoring, electrical engineering, fluid dynamics, architecture and quantum mechanics.

Chaos can be controlled and synchronized. As mentioned earlier, control techniques are used to restore a regular heartbeat from the state of atrial or ventricular fibrillation, thus debilitating heart maladies that are often fatal. Applying appropriately timed electrical perturbations can stabilize the unstable periodic state of the heartbeats. This shows that it is possible to control and stabilize undesired cardiac chaos.


Another possible application in chaos control is for the destabilizing of periodic behavior in the brain, where periodicity is abnormal and associated with epileptic seizure. In this presently ongoing research, any periodic state of the brain system is to be forced away by electrical perturbations. This can effectively ward off an epileptic seizure by creating chaos in periodicity.


Other applications of chaos control include the stabilization of unstable periodic orbits in a driven diode circuit, a multimode laser with an intracavity crystal, a thermal convection loop and the Belousov-Zhabotinsky reaction. Controlling chaotic combustion processes could increase combustor efficiency and reduce environmentally harmful emissions. Mechanical problems of technical and economical importance, ranging from engine chatter to precision drilling in aircraft manufacture, are also amenable to the application of control techniques. The synchronization of chaos is also applied in the encryption for the security of communications.

Noise poses a problem in the control and synchronization of chaos. The development of methods that are robust in the presence of noise will be a prerequisite for many applications, such as controlling neuronal networks in living systems that are notoriously noisy. Noise can be classified into many categories. The hissing sound of speakers is an example of a 'white noise', as it is independent of its frequency. The Gütenberg-Richter law of earthquake exhibits the 'pink noise' since it is inversely related to its frequency. The position of the particles in Brownian motion shows 'brown noise' as it is inversely related to the square of its frequency, and the Cauchy distribution is a 'black noise' that is displaying persistent trends and having an inverse relationship with the cube of its frequency. The power spectrum shows the frequency components of various time series.


A system can be synchronized only if all the Lyapunov exponents of its sub-systems are negative. Phase space reconstruction enables noise filtering and signal separation so that chaos can be controlled, synchronized and tamed. While deterministic noise like the engine vibrations and the ionospheric weather can be controlled to some extent, random noise cannot be controlled due to its infinite embedding dimension.

My Random Thoughts

(that cannot be described by the Hurst exponent)
"Why is it that showers and even storms seem to come by chance,

so that many people think it quite natural to pray for rain or fine weather,

though they would consider it ridiculous to ask for an eclipse by prayer?"

Henri Poincaré
It's interesting to note that new discoveries are usually treated with skepticism, and they often take a long time to be widely accepted. As a result, founders of new concepts become conservative of their findings, and discoveries remain undiscovered, while mysteries remain as mysteries. Pioneers in the study of fractals aborted their investigations as the majority regarded fractional dimensionality as being 'weird'. Edward Lorenz's revolutionary discoveries of sensitive dependence in 1963 were not acknowledged until they were rediscovered by others years later. James Yorke and Tien-Yien Li were also unconfident of their Li-Yorke Theorem and did not send their paper to the hardcore mathematical journals. Even the 'American Mathematical Monthly', which was a journal meant for mathematics teachers, did not accept their submission. It was only very much later when Robert May talked about the logistic map then did the theorem get published in 1975. These disruptions were all due to the conservative mindsets of the people. Chaos is a new science, and a revolution in mindsets is required for the revolution of any new science.


Earlier this century in "The Open Universe: An Argument for Indeterminism", Karl Popper wrote, "Common sense inclines, on one hand, to assert that every event is caused by some preceding events, so that every event can be explained or predicted. On the other hand, common sense attributes to mature and sane human persons the ability to choose freely between alternative possibilities of acting." So, is the future given, or is it under perpetual construction? This is indeed a profound dilemma for all mankind. While classical science emphasized order and stability, now, the concept of chaos has enabled us to understand fluctuations, instability, multiple choices and limited predictability in practically all fields of science, from cosmology to economics. As a result, the meaning of the laws of nature changes radically, for now they express possibilities and probabilities. Mankind is at a turning point, the beginning of a new rationality in which science is no longer identified with certitude and probability with ignorance, but reflects the complexity of the real world.


After attending this course, I have gained considerable insight of the world around us. I have started to notice the beauty of nature and its self-organizing ability. I am fascinated by the wide applications of the concept of chaos, and they have provided me with a new dimension of looking at things that I have always taken for granted. As quoted in the lecture notes, Henri Poincaré once said, "If nature were not beautiful, it would not be worth knowing, and if nature were not worth knowing, life would not be worth living". I have just started to discover the beauty of nature, and I hope it is still not too late for me to learn more about it, and make my life more worth living.










� Lypunov exponent:	� EMBED Equation.3  ���


� Power Scaling Law:	� EMBED Equation.3  ���


� Hurst exponent, H:	� EMBED Equation.3  ���


� Malthus Law (1780):	� EMBED Equation.3  ���


� Verhulst Law (1838):	� EMBED Equation.3  ���


� Robert May's Logistic Map (1973):	� EMBED Equation.3  ���
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